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As an extension of the notion of an L-g spline, three mathematical structures
called LM-g splines of types I, II, and III are introduced. Each is defined in terms
of two differential operators

n-l m

L = Dn + L: a;(t)D; and M = L: bi(t)Di, where n > m > 0, n > 0, D = d/dt,
;=0 i=O

the coefficients G; , j = 0,... , n - 1, and bi , i = 0,..., m, are sufficiently smooth;
and bm is bounded away from zero on [0, T]. Each of the above types of splines
is the solution of an optimization problem more general than the one used in the
definition of the L-g spline and hence it is recognized as an entity which is distinct
from and more general mathematically than the L-g spline. The LM-g splines in­
troduced here reduce to an L-g spline in the special case in which m =0 and
bo = constant oft O. After the existence and uniqueness conditions, characteriza­
tion, and best approximation properties for the proposed splines are obtained
in an appropriate reproducing kernel Hilbert space framework, their usefulness in
extending the range of applicability of spline theory to problems in estimation,
optimal control, and digital signal processing are indicated. Also, as an exten­
sion of recent results in the generalized spline literature, state variable models
for the LM-g splines introduced here are exhibited, based· on which existing
least squares algorithms can be used for the recursive calculation of these splines
from the data.

1. INTRODUCTION

As a generalization of the L-g spline function [1,2], we introduce in the
present paper three types of generalized splines, which we call LM-g splines
because they are defined in terms of two operators Land M. An LM-g spline
reduces to an L-g spline if M is the identity operator.

Our basic motivation for introducing LM-g splines into spline theory is
that they permit a wider application of this theory to problems in estimation
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of random processes, minimum-energy controls, digital signal processing,
and systems modeling.

In the remaining part of this section, we present a brief introduction to
the results in this paper.

In an LM-g spline, Land M are linear differential operators, of degrees n
and m ~ n respectively, with coefficients not necessarily constant, the
domains of Land M being appropriate Sobolev spaces of real-valued
functions on an interval [0, T] of the real line.

In what follows, GM will denote a su.itably defined Green's function
pertaining to M. For each of the three types of LM-g splines to be defined,
let Y denote the space over a subset of which the minimization defining the
spline is to be carried out. Specifically, Y will be the domain of GM , L,
and M, respectively, for LM-g splines of types I,U, and HI. Also, in each
case, let 1> denote a set of k continuous linear functionals on Y, r a k-tuple
of real numbers, and U(r) the set consisting of the elements of Y which
interpolate or smooth r with respect to 1>. Then we say that f* E Y is an
LM-g spline of type I if it minimizes iI L GMf!l, an LM-g spline of type 1I
if it minimizes II GM Lfll, and an LM-g spline of type III if it minimizes
Ii L M fll, in each case overallfbelonging to an appropriate set U(r) defined
as above. Also, in each case II . Ii denotes the norm in the space to which the
range of the compo~ition of the two operators acting on f belongs.

We will see that an LM-g spline of type I is simply the image of an L-g
spline under the differential operator M; that an LM-g spline of type HI
is an image of an L-g spline under GM ; and that if Land 1}f are constant
coefficient operators and under appropriate boundary conditions in the
definition of GM , the LM-g splines of types I and II are one and the same
function.

It may be remarked at this point that the three types of LM-g splines,
which we are introducing here, have, in their respective reproducing kernel
Hilbert spaces, optimal properties of "conventional splines." For this
reason, it pays to think of them as "functions" rather than linear functionals
indexed on t.

Of the previous work in this area, some of the contributions of Wahba
and associates [3-7] are most relevant to the material presented in this paper.
In particular, the generalized splines associated with. spaces of functions
with rapidly decreasing Fourier transforms, referred to by Wahba
constitute specific instances of the LM-g splines defined by us. Also, very
relevant to the present work are the results of Weinert and associates [8-111
and of the author and Caprihan [17].

In what follows, we present, in Sections 2 through 4, a detailed formulation
of the LM-g interpolating and smoothing splines of type I, in an appropriate
reproducing kernel Hilbert space framework. In Section 5, as an extension
of existing results [3, 10] for the L-spline, we construct a state variable
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stochastic model such that the LM-g interpolating and smoothing splines
of type I are least squares estimates of the model ouput given the data; and,
on this basis, we indicate how least-squares algorithms may be used for

.nonrecursive and recursive calculation of these splines.
In sections 6 and 7, we summarize for the LM-g splines of types II and III

results similar to the ones obtained for the LM-g spline of type I. A detailed
treatment is omitted since it would follow along parallel lines.

In Section 8, we consider the special case in which the differential operators
Land M have constant coefficients.

Finally, in Section 9, we discuss applications of LM-g splines to the
problems in signal and system theory mentioned above.

It goes without saying that the results presented in this paper extend
trivially to the case in which Land M are abstract operators in a Banach
space rather than differential operators as assumed by us. Since such a
generalization is unnecessary for the types of applications envisaged here,
it is not discussed in the present paper.

2. THE LM-g INTERPOLATING SPLINE OF TYPE I

For n a positive integer and t a variable belonging to an interval [0, T]
of the real line, let

and

n-l

L = Dn + L aj(t)Di,
i=O

m

M = L bi(t) Di,
i~O

(1)

(2)

where D = dldt, 0 ~ m ~ n, n > 0, aj E 0 [0, T], j = 0,... , n - 1;
bi E Ci+n - m [0, T], i = 0,... , m, and bm is bounded away from zero on [0, T].

If P is an operator from a space X to a space Y, we will denote its null
space by N(P) and its range by PX.

Let Hi, withj a nonnegative integer, denote the linear space of real-valued
functions f on [0, T] such that f(j-l)(=Di-lf) is absolutely continuous and
f(il E V(O, T) (where V(O, T) = HO denotes the linear space of square
integrable real functions on (0, T». Hi is a Banach space under any of the
equivalent Sobolev norms of the form II g II = {~::~~l (Fi g)2 + J~ (Pg(t»2 dt)1/2,
where g E Hi, P is a linear differential operator of order j from Hi to HO
(P being in the form expressed by the right side of (1) with n replaced by j),
and F i , i = 1,... , are linear functionals on Hi which are linearly independent
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on N(P). Let.'!7i denote the set of linear functionals F on Hi of the form
Fg = 'LLo f~ Dig(t) dpit), where fLi are functions of bounded variation.

Let us introduce the subspace

N z = N(L) n N(M) (3)

and denote by nz its dimension.
Also, let if; = {if;1 ,..., if;m} be a set of linear functionals belonging to :Fn

which are linearly independent on N(M), and, for convenience, assume that
these functionals are labeled so that the first nz of them are linearly indepen­
dent on N z • It is then possible to write N(L) and N(M) in the form

N(L) = N1 EB N z ,

N(M) = N z EB N s ,

where EB denotes direct sum, and

N 1 = {g E N(L): if;ig = 0, i = 1, , nz},

Ns = {g E N(M): if;ig = 0, i = I, , nz},

(5)

(6a)

(6b)

and the dimensions n1 and ns of N1 and Ns clearly satisfy n1 = n - nz and
ns=m-nz·

In addition, by means of if; it is possible to define an inverse GM of the
restriction of M to the subspace

H",n = {g E Hn: if;ig =0, i = 1,..., m}. (7)

Specifically, this inverse is the Green's function GM(t, u) of the problem

Mg =f, i = 1,...,m. (8)

GM may be constructed by the procedure in [1, pp. 959-960].
For simplicity, we will abbreviate integral operator actions as follows:

r GM(t, u)f(u) du - GM(t, .) 0 fO - GM(t, .) 0 f, (9)
o

and we will further abbreviate the function GM (', .) 0 fO (i.e., the set of
all t-evaluations of (9» by GMf

Assume finally that we are given a set q; = {¢1 ,..., ¢Ic}, where k ;;? n1 ,
of linear functionals in .'!7n-m, which are linearly independent on MH",n.

We have:
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DEFINITION 1. Let L, M, P, GM , and fJJ be as above. Given a k-tuple
r = (r1 , ••• , ric) of real numbers, an LM-g spline SlL, M, P, fJJ, r;·) of
type I interpolating r with respect to fJJ, is defined by the minimization1

= r (L(t)GM(t, .) 0 SlL, M, P, fJJ, r; .))2 dt, (10)
o

where

Ul(r) = {IE MH",n: ~J = ri' i = 1,... , kV II (11)

Remark 1. If the functionals ~i , i = 1,... , k, are evaluation functionals,
that is ~J = f(ti ), ti E [0, T], i = ,..., k, we call the corresponding spline
simply an LM spline of type 1. II

Remark 2. If the operator M is of zero order, then the corresponding
LM-g spline of type I reduces to the L-g spline of Jerome and Schumaker [2]. II

3. REPRODUCING KERNEL HILBERT SPACE 'RESULTS FOR THE TYPE I LM-g
INTERPOLATING SPLINE

3.1. Brief Review of Pertinent L-g Spline Results

It is necessary at this point to recall briefly the definition of the L-g inter­
polating spline and the structure of the reproducing kernel Hilbert space in
which it appears as the solution of a minimum norm problem. Let L be the
differential operator previously defined and suppose r = {Yl , ... , YI}, I ;?o n,
is a set of linearly independent functionals in §P'n.

DEFINITION 2. Given a real I-vector q = col(ql ,... , ql), the L-g spline
S(L, r, q; .) interpolating q with respect to r is defined by the minimization

I
T T

min (L(t)j(t))2 dt = I (L(t)S(L, r, q; t))2 dt, (12)
fEV(q) 0 0

1 A subscript in parentheses on a symbol representing an operator or functional indicates
the variable with respect to which the operation is performed.

2 The end of a formal statement such as a definition,· a theorem, or a. proof, will be
signaled by the symbol II.
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(13)

It has been shown by de Boor and Lynch [1J and others [2, 8, 12, 13],
that the solution S(L, r, q; .) always exists; and it is unique if and only if

N(L) n V(O) = e, (14)

where e denotes the null subspace. By a well-known argument [2, 8J,
condition (14) may be shown to be equivalent to the requirement that n of
the elements ofT, say YI,"" Yn, be linearly independent on N(L). de Boor
and Lynch [1] showed further that if {~i : i = 1,... , n} constitute the basis
for N(L) dual to YI ,... , Yn , that is, if ~i , i = 1,... , n, are solutions of

then

i,j = 1,... , n, (15)

/("j, g'); - f (yd)(Yd) + IT (Lj(t))(Lg(t)) dt
i~l 0

(16)

is an inner product in Hn, which makes Hn a reproducing kernel Hilbert
space FIn with the reproducing kernel

K(t, u) = f Ut) Uu) + IT GL(t, v) GL(u, v) dv, (17)
i~l 0

where GL is the Green's function of the problem

LI= w, r;/=O, i = 1,... , n. (18)

As emphasized by Weinert [8], the L-g spline of Definition 2 is the solution
of the minimum norm problem in FIn

min IIIlll12 = II! S(L, r, q;
lEV(Q)

where II! ... ill denotes the norm in FIn induced by the inner product (16).

3.2. On the Type I LM-g Interpolating Spline

Returning to our original problem, we are now able to formulate the
following.

THEOREM 1. Suppose L, M, P, (/J, and r are as in Definition 1. Then

(20)
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provided we pick I, r = {Yl ,... , yz}, and q = (ql ,... , qz) as follows:

1= m + k; (21)

Yi = ~iM, i = 1,... , n1 , (22a)

::= Y;i-nl' i = n1 + 1,... , n1 + m, (22b)

= ~i-mM, i = nl + m + 1,... , (m + k); (22c)

qi = ri, i = 1,..., n1 , (23a)

=0, i = n1+ 1,..., n1+ m, (23b)

= ri-m, i = nl + m + 1,..., (m + k). (23c)

Proof Since U1(r) is in the range of M, and M is one-to-one and onto
from H",n to HM</Jn, U1(r) is isomorphic under M to the set

{jEMH",n: MJE U1(r)} = {JEHn: ¢;J = 0, i = 1,..., m, (24a)

~jMJ = rj,j = 1,... , k} (24b)

= {jEHn; yJ = qi, i = 1,... , k + m} (24c)

= V(q), (24d)

(24c) and (24d) following from (22a), (22b), (22c) and (23a) (23b), and (23c).
Let f and J denote the corresponding elements of U1(r) and V(q), i.e.,

(25a)

or equivalently,

(25b)

According to (25b),

(26)

Substitution of (26) in (10) shows that the minimization problem (10) is
equivalent to the minimization problem (12), provided V(q) is chosen as in
(24a-d), with the associated correspondence (25a), (25b). In particular, it
follows from (25a) that the minimizers of the two problems are related by
(20). II

THEOREM 2. The LM-g spline of Definition 1 always exists. II
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Proof Clear, since theL-g spline S(L, r, q; .) in (20) always exists [2].

THEOREM 3. The LM-g spline of Definition I is unique if and only if

Wn U1(O) = 19,

where W == MN(L) = MN1 • II

Proof Since by (22b) and (23b), (27) is equivalent to (14), (27) implies
uniqueness of S(L, r, q; .) in (20) and hence, of SICL, M, P, qJ, r; -).
prove the "only if" part of our assertion, suppose the solution
y* == S/(L, M, P, qJ, r; .) of the minimization problem (10) is unique and
yet (27) is not required to hold. Then there is at least one nonzero element,
say 2 0 , in W n U1(O). Substitution of Yl* - y* + 2 0 and Y2* == y* - 2 0

in (10), and (11) shows that y*, Y1 * and Y2* are solutions of the minimization
problem (10), which contradicts our assumption that y* is unique.

Henceforth, we shall assume that the conditions of Theorem 3 hold and
hence that n1of the functionals cp;, i = 1,... , k, specifically CP1 ,... , CPn. , are
linearly independent on W. i

The following gives the reproducing kernel Hilbert space structure for the
spline under construction.

THEOREM 4. Under (27),

<f, g) = I (cpd)(cp;g) + IT (L(t)GM(t, .) 0 f)(L(t)G'>{(t, .) 0 g) dt (28)
;~1 0

is an inner product for allf and g E MH",n, which makes MH,/Jn a reproducing
kernel Hilbert space, denoted henceforth by m-m, with the reproducing kernel

"1 T

K(t, u) = L 1);(t) 1);(u) + I M(t)M(n)GL(t, v) GL(u, v) dv, (29)
;~1 0

where 1);, i = 1,... , n1, are the elements of the basis for W dual to cp;,
i = 1, ... , n1 , that is, (according to (25a))

i = 1,... , n1 , (30)

with ~; , i = 1,... , n1 , defined by (15), together with (22a), (22b).

Proof Because H",n is a closed subspace of Hn, the restrictions <{f, g}
and K(t, u) of (16) and (17) to f and g EO H",n are valid inner product and
reproducing kernel for H",n. Since M is continuous, one-to-one and onto,
from Hwn to MH",n, (28) is obtained from (16) by setting f = MJ and
g = Mg (or equivalently,! = GMfand g = GMg) and using (22a), while (29)
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is obtained by the well-known technique of replacing the action ofan operator
on the elements of a reproducing kernel Hilbert space by its action on the
reproducing kernel, i.e., (29) follows from3 :

(31)

As in the case of (19), Definition 1 may be reformulated in the reproducing
kernel Hilbert space H~-m. Thus if II . II denotes the norm in this space
(induced by (28», we have:

DEFINITION 3. If L, M, P, <!>, and r are as before, S/(L, M, P, <!>, r; .) is
the solution of

(32)

Equation (32) is a conventional minimum norm problem in the Hilbert
space H~-m. The solution for such a problem is well known [15]: it is the
unique element fo (- SiL, M, P, <!>; .» of H~-m orthogonal to U1(0),
that is, lying in the span of the representersh i , i= 1,... , k, of the linear
functionals epi' i = 1, ... , k, in H~-m, satisfying the data constraints.
Specifically,

Ie

fo(t) = I cxjhit),
j~l

(33)

where, by a well-known property of representation .of linear functionals in a
reproducing kernel Hilbert space [14, 8],

j = 1,..., k, (34)

and the constants (Xj ,j = 1,... , k, are determined from the requirement that

k

epdo = I <hi ,hj) (Xj = ri,
j~l

i = 1,... , k. (35)

As in the L-g spline case [8], the solution of (35) permits us to express
S/(L, M, P, <!>, r; t) explicitly in terms of the data.

3 By a straightforward but rather tedious calculation, one can show that K(t, u) defined
by (29) satisfies the two requirements for it to be the reproducing kernel of H~-m, namely,
that K(', u) is an element of H~-m and <K(·, u),fO> - f(u) VfE H~-m (for basic theory of
reproducing kernel Hilbert spaces see [14]).
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cx = col(cx! , , CXk), (36)

h = col(h! , , hli), (37)

H = k X k matrix with the (ij)th element = <hi, hi), (38)

r = col(r! ,... , rk ), (39)

Eqs. (35) take the form

Hcx = r, (40)

which, since H is invertible because hi , i = 1,... , k, are linearly independent,
leads to

(41)

where the superscript T denotes the transpose.
Before closing this section, it is worthwhile in connection with the applica­

tions of Section 9, to state the property of "best approximation of linear
functionals" for the LM-g spline approximation under discussion. This
property holds, of course, in the present case, on the basis of well-known
arguments developed for splines in a Hilbert space by Golomb and Weinberger
[16], and hence it is ,stated without proof.

THEOREM 5 (Best Approximation of Linear Functionals). For E a positive
constant and U!(r) as in (11) let

and assume that Vir) is nonempty. Then, given a continuous linear functional
X on Hr-m

, the value xU) which minimizes

(43)

over ailfE Hr~m is given by x(fo) wherefo = S/(L, M, P, CP, r; .).

4. THE LM-g SMOOTHING SPLINE OF TYPE I

In a manner analogous to its interpolating counterpart, an LM-g smoothing
spline of Type I may be defined as a generalization of the L-g smoothing
spline. Suppose L, M, P, and <l> are as before, and let there be given
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real data vector r = col(ri , ..• , r k ) and a symmetric positive definite k X k
matrix Q which expresses the fidelity that the solution is required to maintain
to the data.

DEFINITION 4. An LM-g smoothing spline SlL, M, P, (/J, r; Q; -) of Type I
is the solution of the unconstrained minimization problem:

min IfT(L(t)GM(t, .) 0 f)2 dt + (r - (/Jf)T Q-I(r - (/Jf)/, (44)
fEMHv/' I 0 \

where

(/Jf = col(if;d,· .., if;d). II (45)

The following points may be made regarding the above spline:
(i) By an argument similar to that in the preceding section, it follows

that, with rand q as described by (22a-c) and (23a-e),

S/(L, M, P, (/J, r; Q; t) = M(t)S(L, T, q; Q; t). (46)

Here, S(L, r, q; Q; -) is the L-g smoothing spline, defined as the solution of
the minimization problem:

_j~1~n ILT
(Lj(t))2 dt + (q - rlY Q-I(q - rn! (47)

tf.r lJ=O,i=l, .. "m

where
(48)

We will assume that (27) holds. The existence and uniqueness of
SlL, M, P, (/J, r; Q; .) then follows from the existence and uniqueness of
S(L, r, q; Q; .).

(ii) Introduce the Hilbert space W = V X Rk with the inner product
in W defined by

(49)

wheref = col(A '/2), g = col(gl' g2), withh, gi E H;-m and};, g2 E Rk.
Let h; ,j = I,..., k, be as in (34) and define 7T: H;-m -+ L2, (/J: H;-m ----+ Rk,

(/Jt, iT: H;-m ->- W, iTt, and pEW by

7T = LGM ;

iT = col(P, (/J);

(/J = col(h1 , -), ... , (h k , .»); (/Jt = (hI, ... , hk );

(50)
iTt = (7Tt, (/Jt); 7Tt = Adj(7T); P = col(O, r).

Finally, for simplicity in notation let f* = S/(L, M, P, (/J, r; Q; .).
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Then, the functional to be minimized in (34) may be rewritten as

J(f) = (£- E -p, £-f - p)W ,

343

(51)

and following the developments in [17] we have 1'heorems 6 and 7 below.
In fact, taking the Gateaux differential of (51) along LIfE H;-m,

2(£-t£-f - £-tp , £1f),

the requirement that (52) vanish for all £1fatf = f* leads to

THEOREM 6. f * is the solution of

£-t£-f = £-tp.

(52)

(53)

Let A denote the orthogonal complement of N«(j)) in H;-m; that is, A is
the span of {hI, ...' hk }.

THEOREM 7. f* EA.

Proof Let fL denote the orthogonal projection operator from H~-m

to A. Then

J(f) = (7T[fLf + (f - fLf)], 7T[fLf + (f - fLf)])L2 + (fJ>fLf - p)T Q-l(epfLf-

= (7TfLf, 7TfLf)L2 + (7T[f - fLf], 7T[f - fLfD L, (<Pp-f - PY Q-l(<Pflf-

= J(fLf) + lif - fLfll~n-m
1

;); J(fLf)

with equality if and only iff = fLf II
(iii) As done with the derivation of (41) in the interpolating case, it is

possible, on the basis of the preceding, to derive a nonrecursive algorithm
for obtainingf*. Thus by Theorem 7, we may write

k

f*(t) = L ooil/t) - Wet) 00,

;~l

which when substituted in (53), use being made of (50), leads to

(54)

k

L OO;[7T t7T + q'itcP] h; = <ptr. (55)
;=1

Obtaining the inner product in H;-m of both sides of (55) by hi , i = k,
and expressing the resulting k equations in matrix form, we get



344 RUI J. P. DE FIGUEIREDO

where H is defined by (38) and B is a matrix with elements Bo , i, j, ..., k,
given by

(56b)

where KI is defined by (59b).
Equations (56a) and (54) then give the desired nonrecursive expression for

the smoothing LM-g spline of type I:

(57)

5. LM-g SPLINES OF TYPE I IN THE CONTEXT OF EsTIMATION OF

STOCHASTIC PROCESSES

5.1. Introduction4

In the correspondence between Bayesian estimation and spline inter­
polation established by Kimeldorf and Wahba [3-5] and Weinert and
Kailath [8, 9], the data are modeled as arising from nonnoisy discrete linear
measurements made on a realization (sample function) y = {yet): 0 ~. t ~ T}
of a second-order zero-mean real-valued stochastic process Y = {yet):
o~ t ~ T}, and the least-squares (minimum variance) estimate yet) of yet),
given the measurements, is the value at t of an L- or L-g spline interpolating
the data. In such a correspondence, the reproducing kernel of the Hilbert
space on which the spline is defined is equated to the covariance of the process
Y, which permits the determination of the differential operator L, associated
with the spline, from the covariance; and the functionals constraining the
spline are the same as the ones expressing the measurements on the realization
{y(t): 0 ~ t ~ T}.

If the measurements are contaminated by noise, independent of Y, then
the least-squares estimate yet) is the value at t of an L- or L-g smoothing
spline, with the operator L and the constraining linear functionals same as
in the interpolating case, and the fidelity matrix Q equated to the covariance
of the discrete measurement noise.

Weinert and Sidhu [10] have further explored the above correspondence
by deriving a state-variable model for the process Y, for the case of inter­
polation by L splines, and using this model to apply existing least-squares
recursive smoothing techniques to the recursive calculation of the inter­
polating L spline.

However, processes Y which give rise to minimum variance estimators y
that are L or L-g splines, as described above, are "autoregressive" in nature,

4 Readers unfamiliar with the material in this subsection may wish to read Section 9.1
first.



LM·g SPLINES 345

that is, they are modeled by dynamical systems, driven by white noise,
possessing only "denominator dynamics." More general processes Y which
are both "autoregressive" and "moving average," i.e., which require both
denominator and numerator dynamics in their dynamic modeling, lead to
LM or LM-g splines, introduced in the present paper, as minimum variance
estimators.

In the following subsections, we. discuss stochastic models on the basis
of which the Type I LM-g interpolating and smoothing splines are derived
as least-squares estimates.

5.2. A Stochastic Model Associated with the LM-g Interpolating Spline
Type I

In our state-variable model (Eqs. (66a)-(66e)) for the process Ypertaining
to the LM-g interpolating spline of type I, the introduction of the operator
M essentially generalizes the structure of the matrixS c in the model derived
for the L spline by Weinert and Sidhu [10).

To obtain the proposed model then, we note that, in our case, the co­
variance of Y is the reproducing kernel K(t, u) given by (29), and proceed
exactly as in [10] by partitioning K(t, u) in the form

where

K(t, u) = Ko(t, u) + K1(t, u), (58)

nl

Ko(t, u) = L YJi(t) YJi(U);
i=l

K1(t, u) = JOT M(t)M(u)GL(t, v) GL(u, v) dv,

(59a,b)

and introducing the second-order zero-mean stochastic processes

Yo ==: {Yo(t): 0 ~ t ~ T}

and

with covariances Ko(t, u) and K1(t, u), respectively. Since Ko and K1 are
reproducing kernels for an orthogonal decomposition of H~-m, they induce
the stochastically orthogonal decomposition of Y:

5 The matrix c referred to here is the one appearing in the measurement equation such
as (66b).
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(where, by stochastic orthogonality, E{Yo(t) Y1(t)} = 0) with the corre­
sponding relationship among the realizations Y, Yo , and YI of Y, Yo, and Y1 ,

yet) = Yo(t) + YI(t), O~t~T. (61)

It follows from (58), (60), and (61) that YoU) is the least squares estimate
of yet) given rPiY, i = 1,..., ni (i.e., Yo is the projection of Y on the span of
the representers of rPi , i = 1,..., nl)' Hence,

nl

YoU) = L (rPiY) rPi(u)K(t, u)
i~l

nl

= L: (rPiY) YJlt)
i~1

nl

= L: riYJi(t).
i~1

(62a)

(62b)

According to (30), (15), (22a), and (22b), (62a)-(62b) is equivalent to

Yo(t) = MYo(t),

LYo(t) = 0,

rPiMyo = ri , i = 1,... , n1 ; lfjYo = O,j = 1,... , n2 •

(63a)

(63b)

(63c)

Also, from (59b) (which is the covariance of the process Y I ) it is clear
that the covariance of the process LGMYl is o(t - u), and hence, hU),°~ t ~ T, is described by

L(t)GM(t, .) 0 YI = wet), (64a)

rPiYI = 0, i = 1,... , ni ; rPiYI = ri - rPiYO f i ; i = ni + 1,... , k, (64b)

where wO is a sample function of white noise (formal derivative of a Wiener
process) with unit impulse covariance.

The system (64a), (64b) is equivalent to

YI(t) = Mylt),

LYI(t) = wet),

lfiJl = 0, j = 1,... , n2;

i = ni + 1,... , k.

(65a)

(65b)

(65c)

Thus we conclude that the set of Eqs. (61), (63a-c), and (65a-c) provide
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an input-output description for the process Y which we are seeking. This
description can be converted to anyone of the standard state variable
descriptions for systems such as the above available in the literature (see,
e.g., [18]). The following particularly simple state-variable model results
from (61), (63a-c) and (65a-c), if we assume that m < n:

~(t) = A(t) ~(t), . = d/dt,

Yo(t) = eT(t) ~(t),

x(t) = A(t) x(t) + bw(t),

Yl(t) = eT(t) x(t),

yet) = YoU) + Yl(t),

(66a)

(66b)

(66c)

(66d)

(66e)

where ;ret) and xCt) are real n-vectors, which together express the "state" of
the system at t, and A(t) is an n X n matrix and band e(t) are n-column
matrices described by:

ACt) = [~ ~ ~ ~
o 0 ° °

-aoCt) -ait) -a2(t) -alt)

b = col(O, 0,... , 0, 1),

c(t) = col(bo(t), b1(t ), ..., bm(t), 0, ... , 0).

(66f)

(66g)

(66h)

To complete this description, we need to specify, in terms of the data,
the initial state ;reO) of (66a), the mean (which is equal to zero) and covariance
of the initial state X(O) of (66c) (where we denote by X = {XCt): 0 ~ t ~ T}
the stochastic process of which {x(t): °~ t ~ T} in (66c), (66d) is a reaIiza­
tion), as well as the correlation of X(O) with the input. These ql,lantities are
expressed by Eqs. (71) to (77) below, the derivations of which we omit since
they constitute a straightforward application to our case of the procedure
followed with the L spline in [10].

Denoting by P(t2 , t1), the principal matrix solution of (66a), andintroducing
the n-column matrices

p := COl(Pl , , Pn) == col(fl , , <Pnl' 0/1"'" o/n2)' (67)

i == col(i\ , , in) == col(r1 , , rn1 , 0,... , 0), (68)

the constant n X n matrix

F- P(t) cT(t) pet, 0) (69)
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(the ijth element of which consists of the action of the functional Pi on the
function L~~l cpO Ppk, 0) on [0, TJ), and with the notation

pet, v)+ = 0,

= pet, v),
we obtain

,yeO) = F-17

(and hence, according to (66b»

t < v

t > v,
(70)

(71)

yo(t) = cT(t) pet, 0) F-ly, (72)

E{X(O)} = 0, (73)

E{X(O) XT(O)} = F-IC(FT)-\ (74)

C = {CiJ}i,j~l" ...n, (75)
min(t.t')

CiJ = PiWP,.(t') [cT(t) (f pet, s) bbTPT(t', s) dS) c(t')]. (76)
o

E{X(O) W(v)} = P(t)CT(t) pet, v)+ b. (77)

Now (73), (74), and (77) may be used with any standard least-squares
smoothing algorithm [19J, and in particular with a modified version of the
algorithm in [10], for the recursive calculation of the LM-g spline of type I
identified as the least squares estimate yet) of yet) described by (66a-h),
given the data.

5.3. A Stochastic Model Pertaining to the LM-g Smoothing Spline of Type I

From (44) it easily follows, by an extension of the aJ:gument presented in
the preceding section, that the value SICL, M, P, If>, r; Q; t) of the LM-g
smoothing spline of type I is the least-squares estimate of y(t) described
by (61), (63), and (65), witl:). the first equation in (63c) and (65c) replaced
respectively by

where Z = col(zl '00" Zk) is a measurement noise vector with covariance Q
and independent of y.

The corresponding state variable model is again described by (66a)-(66h)
with appropriate accounting of the initial conditions. However, in the
ensuing least-squares smoothing algorithm for the recursive calculation of
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yet) (which is equal to SlL, M, lJf, 1:>, r; Q; t)), the covariance Q of
additive measurement noise z (indicated above) has to be included in a
standard way [19].

6. SUMMARY OF RESULTS FOR INTERPOLATING AND SMOOTHING

LM-g SPLINES OF TYPE II

Let Land M be the differential operators described in Section 2 except that
now6 the coefficients OJ and hi satisfy, respectively, OJ E Ci+m[o, T), j = 0,... ,
n - 1, and bi E Ci[O, T], i = 0,... , m. Thus Land M are continuous linear
operators, respectively from Hn+m to Hm and Hm to P(O, T).

Suppose that we are given a set f of linear functionals fi' i = 1, ... , m,
on Hm which are linearly independent on N(M) and a set 1:> of linearly
independent functionals epj, j = 1,... , k, k ~ n, on Hn (and hence also
on Hn+m) such that <PI ,... , <Pn , constituting a subset (j5 of <P, are linearly
independent on N(L). Here, lJf E:Fm and <P E :Fn . It is then possible to define

and

H,p'n = {g E Hm: fig = 0, i = 1, ... , m},

H- n+m { H n+m . .J. 0' 1<I> = g E . 'rig = , I = ,... ,

H<I>n = {g E Hn: <Pig = 0, i = 1,... , n}.

(78a)

(78b)

(78c)

In a way analogous as before we may introduce the Green's functions
GM : MH<J;m -+ Hwm and GL : LH<I>n -+ H<I>n. Note that GL is well defined
on LH~+m.

Let

(78d)

and, given a data k vector r (as in (39), let

(79)

(80)

We then have:

DEFINITION 5. With L, M, lJf, <P, <P, and r as above, an LM-g spline
SlI(L, M, lJf, W, r; .) of type II interpolating r with respect to 1J is defined by

I
T T

min (GM(t, .) 0 Lf)2 dt = J (GM(t,') 0 LSII(L, M, lJf, 1:>, r; .»2 dt.
[EU2(r) 0 0

The following results can be proved by the methods of Section 3.2.

• In this section as well as in the following one, some of the previously used symbols
are redefined to fit the definition and developments related respectively to LM-g splines
of types II and III.
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THEOREM 8. The LM-g interpolating spline of Definition 5 exists, and,
in view of the way we defined 1>, it is unique. II

Let 7Ji' i = 1,..., n, constitute the basis for N(L) dual to rPi' i = 1,..., n,
and use the notation fIn+m == GLGM LH1n.

THEOREM 9. Sn(L, M, lJf, 1>, r; .) satisfies

Sn(L, M, lJf, 1>, r; t) = GL(t, .) 0 MLj *,

where j * is the L-g spline defined by

(81)

l:~~m If (Lj(t))2 dtl = iT (LJ*(t))2 dt. (82)
¢Je=</Ji(t)GL(t,.)ML1~r i, i~I, ... ,k

THEOREM 10. H1n, equipped with the inner product

<f, g) = f (rPd)(rPig) -+ JT [GM(t, .) 0 Lf][GM(t, .) 0 Lg] dt
i~l 0

(85)

(83)

constitutes a reproducing kernel Hilbert space with the reproducing kernel

K(t, u) = f 7Ji(t) 7Ji(U) -+ JT [M(v)GL(t, v)][Miv)GL(u, v)] dv, (84)
i~l 0

where the superscript t denotes the adjoint. II

THEOREM 11. SlI(L, M, lJf, 1>, r; .) is the solution of the minimum norm
problem in H1n (with the norm II '11 induced by the inner product (83))

min 11/112
• II

[EU2(r)

It is clear that, provided rPj and K are interpreted as in the present section,
formula (41) also permits an explicit representation for the LM-g spline
in the present case.

Finally, as in Definition 4, we have:

DEFINITION 6. If Q and r are as in Definition 4 and L, M, lJf, and 1> as
above, an LM-g smoothing spline SlI(L, M, lJf, 1>, r; Q; .) of type II is the
solution of the problem

min lJ T
(GM(t, .) 0 Lf)2 dt -+ (r - (PlV Q-l(r - 1>1)1. II (86)

[EHln 0 J

Again, in the reproducing kernel Hilbert space of Theorem 10 a repre­
sentation for SlI(L, M, lJf, 1>, r; Q; .) can be obtained exactly as for S,(L, M,
P, 1>, r; Q; .) in Definition 4.
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Analogous to the system (61), (63), and (65), we have the following input­
output stochastic model (consisting of (87), (88), and (89» for which
LM-g spline of type II is the least-squares estimate:

rpih = 0, i = 1,... , n;

yet) = YoU) + h(t),

LYo(t) = 0,

-J-· yo = r·'fit 1, .,

Lh(t) = Mw(t),

i = 1,... , n,

(87)

(8Sa)

(88b)

(89a)

(89b)

Remark 3. Equation (87) is a realization ofan orthogonal decomposition
of the process Yas in (60), with the covariances of Yo and Y1 equal, respec­
tively, to the summation and integral terms in (84). We will simply indicate
how (89a) is obtained. From the definition of the process Y1 , it follows
that the covariance of the process GM LY1 is

x [f GM(u, u') L(u')Miu')GL(u', v) du'] dv

T T T
= [ [J GM(t, t') J L(t')GL(t', s) Mc,)o(s - v) ds dt']

o 0 0

X [IT GM(u, u') IT L(u')GL(u', z) M(z)o(z - v) dz dU'] dv
o 0

= f [f GM(t, t') M(t')o(t' - v) dt']

X [f GM(u, u') M(u')o(u' - v) du'] dv

= IT (Miv)GM(t, v)(Mlv)GM(u, v» dv
o

= iT oCt - v) o(u - v) dv = oct - u),

which is the covariance of white noise wet). This leads to the model:

(90)

GM(t, .) 0 LYI = w(t), (91)

which, when formally operated on both sides by M, leads to (89a).
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From elementary considerations [18] it follows that Eqs. (66a-e) constitute
a valid state-variable model for the system (87)-(89), with the matrix A(t)
defined by (66f), and Eqs. (66g) and (66h) replaced by (66g') and (66h')
below:

1 0 0 0 0..,-1 0 ..,
an_let) 1 0 0 °an_2(t) an-let) 1 ° ° °bet) = bm(t) (66g')

bm-l(t)

L ao(t) ait) a2(t) a3(t) . an-let) 1 L bo(t) .-I

(where the rightmost member is an n-vector consisting of the coefficients
bi(t), i = 0,... , m, of M and (n - m - 1) zeros, as indicated),

c(t) = c = col(l, 0, ... , 0). (66h')

Conditions (73), (74), and (77) also apply to the present case, provided
band c are defined as in (66g') and (66h'), and (67) and (68), are:

r = col(rl , .•• , rn).

(67')

(68')

Finally, it is clear that the above model also leads to the LM-g smoothing
spline of type II as a least-squares estimate provided (89b) is replaced by

(89b')

7. LM-g SPLINES OF TYPE III

A third type of LM-g spline may be introduced if we assume L to be the
same as for Sf , and the coefficients of M to be such that M is an operator from
Hn+m to Hn. Let n4 where n ~ n4 ~ n + m, denote the dimension of N(LM).
Then given a set q) = {<PI"'.' <Pk}, where k ~ n4 , of linear functionals in
,fFn+m, (with <PI ,..., <Pm linearly independent on N(M) and <PI"·., r/>n linearly•independent on N(LM» and a real k-vector r, we have:

DEFINITION 7. An LM-gspline Sm(L, M,eJ>, r; .) of type III interpolating
r with respect to q) is described by

I
T T

min (LMf(t)2 dt = I (LMSm(L, M, q), r; t»2 dt
[EUsCr) 0 0

(92)
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(93)

It follows that an LM-g spline of type III is an L-g spline with the diJ­
ferential operator consisting of the composition LM. However, its structure
does complete the picture of classes of generalized splines generated by two
differential operators, and for this reason we bring it up here. In fact, if we
define the Green's function GM pertaining to M and to the set of functionals
<PI"'" <Pm, and introduce the set r == {Yl ,..., YIc} = {fl ,..., flc} of linear
functionals on Hn defined by

i = 1,... , k, (94)

then, analogous to the result (20) for the LM-g spline of type I, we have in
the present case

Sw(L, M, CP, r; t) = GM(t, .) a S(L, r, q; .) (95)

where q = r, and S(L, r, q; .) is the L-g spline in a subspace of MHn+rt<
interpolating q with respect to r. It is clear (and hence we do not further
elaborate it here) that developments analogous to those in sections 2 to 5
hold in the present case with the role of M in those sections replaced by GM .

8. THE CASE IN WHICH LAND M ARE CONSTANT COEFFICIENT OPERATORS

It is of interest to note that if Land M are constant coefficient differential
operators, then Land M commute in the integrals appearing in (10) and (44)
provided the conditions of the following theorem are satisfied. It follows
that in such a case the LM-g splines of types I and II are the same.

THEOREM 12. Suppose Land M are constant coefficient differential
operators, and either (a)U1(r) is restricted to the subspace of MH1;n consisting
offunctionsfwhich vanish at end-points (this is equivalent to requiring that two
of the constraining functionals <Pi, say <PI and <P2, satisfy <PI! == f(O),
<pd == f(T), and r1 = r2 =;= 0); or (b) <PI! == f(O) = r1= 0 and ~d = f (0), ... ,
~mf =~ pm-l)(O). (This requirement on .pi, i = 1, ... , m, is equivalent to the
condition that GM be causal.) Then Land GM commute in (10) and (44).

Proof In (10) and (44) we have

LWGM(t, -) of= r 4WGM(t- s)f(s)ds

= JT Lls)GM(t - s)f(s) ds
o

= rGM(t - s) L(s>f(s) ds - GM(t - T)f(T) + GM(t)f(O),
o

the last equality following from Green's formula [20, p. 86].
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From (96) and either of the sets of conditions in the theorem, the result
of the theorem follows. II

9. ApPLICATIONS TO SIGNAL AND SYSTEM THEORY PROBLEMS

9.1. Estimation of Mixed Stochastic Processes

As is wellknown, in the solution of the optimal .linear filtering and
prediction problems, the structure of the filter or predictor is based on the
models assumed for the signal and noise stochastic processes. For any such
stochastic process7 Y = {yet): 0 ~ t ~ n, the model most commonly
used assumes Y to be the output of a linear dynamical system '§ driven by
white noise W = {Wet): 0 ~ t ~ T}.

If the process Y is stationary, '§ is time-invariant and can therefore be
described by a "transfer function" G(iw), where i = (_1)1/2 and w is the
frequency variable. A reasonable assumption to make in most cases is that '§

is lumped. This is equivalent to assuming that G is a rational function, that is,

G(iw) = M(iw)jL(iw),

where Land M are polynomials in iw of the form

n~l

L(iw) = (iw)n + I aliwY,
j=O

m

M(iw) = I bp(iw)P,
P~O

(97a)

(97b)

(97c)

(98)

aj ,j = 0, ... , n - 1, and b p , p = 0,... , m, being constants.
A process Y modeled as above is depicted in Fig. 1. For white noise

with covariance Kw(t, s) = oCt - s) (and hence with unit spectral density),
the spectral density Sy(w) of Y is

S ( ) - I G(' )12 _ I M(iw)1
2

y W - lW - I L(iw)12

w(t)-­

(WHITE NOISE)

LINEAR TIME-INVARIANT
DYNAMICAL SYSTEM G

WITH TRANSFER FUNCTION f----y (t)

M(iw]
G(iw) = LOW)

FIG. 1. Model of a stationary stochastic process Y.

7 As done earlier in the text, random processes will be denoted by capital letters and their
sample functions by the corresponding small letters.
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In the above formulation, the polynomials Land M are said to express
respectively the "denominator" and "numerator" dynamics of the system '§.

Processes Y for which the degree m of M is zero (and hence for which G
consists only of denominator dynamics) are called autoregressive processes.
On the other hand, processes for which G consists only of numerator dynamics
(n = 0) (with differentiation of white noise appropriately interpreted) are
called moving average processes. Processes for which both numerator and
denominator dynamics are present are called mixed processes.

It is clear that the above classification of stochastic processes Y holds
if we generalize the structure of '§ to that of a linear time-varying system
described by a differential equation of the form

Ly(t) = Mw(t), (99)

where Land M are the differential operators defined by (1) and (2). According
to the Fourier transform theory, in the special case in which Land Min (99)
have constant coefficients, the differential equation description (99) of q}

corresponds to the description by means of the transfer function G(iw)
given by (97).

Let us now return to the spline approximation problem. Because it is
easier to visualize the underlying ideas in terms of transfer functions, we
shall assume in the following that the differential operators Land M have
constant coefficients. Our remarks will clearly extend to the case in which
they vary with t.

The interpolation by one of the three types of LM-g splines proposed by us
corresponds to the least squares noiseless prediction of a mixed process
modeled as in Fig. 1, while the smoothing by such an LM-g spline corresponds
to the least squares filtering or prediction of such a process in the presence
of observation (measurement) noise.

Specifically, in the interpolation problem, the function yO to be interpolated
is given by (61), with Yo(') a suitably defined function dependent on some
of the data, as indicated before, and YlO a sample function of a random
process Y1 described by one of the models represented in Figs. 2, 3, or 4,
depending on whether the interpolation is by an LM-g spline of type I,
or III. Note that the difference between the models pertaining respectively
to LM-g splines to types I and n lies in whether the numerator dynamics
follows or precedes the denominator dynamics.

For the cases in Figs. 2, 3, and 4, the least-squares predictor of yet) based
on the discrete noiseless measurements cPiY = 'i ,i = 1,... , k are, respectively
yet) = SiL, M, P, ifJ, r; t), j = I, II, and SIJI(L, M, CP, r; t).

In the smoothing problem, the signal process Y is still described as
in Figs. 2, 3, and 4, but the discrete measurements are corrupted by additive
noise Zi, i = 1, ... , k. The least-squares estimate of yet) is then y(t) =
SlL, M, P, ifJ, r; Q; t),j = lor II, orSm(L, M, ifJ, r; Q; t).



356 RUI J. P. DE FIGUEIREDO
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FIG. 2. Stochastic model pertaining to an LM-g interpolating spline of type I.
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FIG. 3. Stochastic model pertaining to an LM-g interpolating spline of type II.

a::
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!;:(
--'o
(L

~ y(t)
~ =Sill (L,M,tjt,ep,r;l)
w
z
--'
(L
(fJ

FIG. 4. Stochastic model pertaining to an LM-g interpolating spline of type III.
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It is clear then that on both the interpolation and smoothing problems,
the least-squares estimate yet) may be obtained by means of a recursive
least-squares algorithm [18J.

9.2. Minimum Energy Control Problems

The way in which generalized splines appear in the formulation of the
solution to a class of minimum energy control problems has been discussed
in [21, 8, 11,22]. However, the systems considered in those references
possess no numerator dynamics. The LM-g splines introduced here not only
permit the generalization of these results to systems with both numerator
and denominator dynamics but also bring further insights into the existing
results. We shall first explain the second part of the last statement, assuming,
for simplicity in presentation, that the constraining functionals are inter­
polating.

The question under consideration may be posed as follows:

Problem 1. Given a dynamical system whose input u and output yare
related by

Ly(t) = u(t), (100)

where L is the differential operator in (1), and subject to the output constraints

i = 1, ..., k, t i ELI, (101)

where LI: 0 < t1 < ... < tk < T, and 'i, i = 1,... , k, are real numbers;
find the control u* in the range of L of minimum energy, that is, which
minimizes the V(O, T) norm of u under (100) and (101). II

According to the minimum norm property of L splines [13], the y* which
when replaced in (100) gives u*, is the L-spline y*(t) = S(L, LI, r; t),
a y* satisfying:

(a) U Ly*(t) = 0, t i ~ t < ti+1 , i = '1, ... , N - 1; (102a)

(b) y*(ti) = ri, ti E .1; (1020)

(c) y* E C2n-2; (I02c)

(d) Ly*(t) = 0, o~ t < t1 , and tN ~ t ~ T. (102d)

Applying (100) to (102) we conclude that the u* that we are seeking is
defined by

u*(t) = L8(L, .1, r; t), (103)
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which according to Theorem 1 vhows that u* is an LM spline of type I with
M=L.

As a generalization of Problem 1 we have:

Problem 2. Same as Problem 1 with Eq. (100) replaced by

Ly(t) = Mu(t), O~t~T, (100/)

where M is as in (2). II
It is clear that the function y* satisfying (100/) and the remaining conditions

of Problem 2 (instead of being defined by (102a-d)) is an appropriate LM
spline of type II, SII(L, M, .d, r; t). Also, the application of the operator
GML to (81) shows (in light of (100')) that u* in this case is again an LM
spline of type I.

As we have said before, the remarks in this subsection extend immediately
to the case in which the evaluation functionals are replaced by arbitrary
continuous linear functionals, this bringing into the discussion L-g and LM-g
splines rather than Land LM splines.

9.3. Digital Signal Processing and System Modeling

An approach to the optimal design of digital filters and digital simulators,
based on an appropriate modeling of the signal source and a subsequent
use of the theorem on best approximation of linear functionals [16], was
presented in [23]. This approach was further extended in [24] to the modeling
of systems on the digital computer. In these works, generalized splines
provide a natural setting for the formulation and solution of the problems
posed.

The LM-g splines introduced in the present paper permit us to generalize
the source models previously used. Specifically, the model used in [23] for
the signal source is of the form

S = {IE Hn: II L/112 ~ y2, ~J = ri' i = 1'00" k.} (104)

where the meaning of the symbols is clear. The generalization of (104)
referred to above is obtained by replacing L/ in (104) by LGMf, GMLf,
orLMf

10. CONCLUSION

Three types of genralized splines, called LM-g splines of types I, II,
and III, have been introduced as a generalization of the L-g spline [2]. Their
properties have been investigated and their role in problems of estimation of
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stochastic processes, minimum energy controls, and digital signal processing
and system· modeling indicated. Further discussion on the algorithms that
result from the present formulation is contained in [17, 25].
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